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ABSTRACT

The change of initial condition (CIC) problem in the theory of smoothing

in linear estimation is formulated in terms of a fixed rank perturbation to a

covariance kernel. The CIC or partitioning formulae are then shown to apply

for general nonstationary processes. It becomes clear that the formulae

involved derive from inversion formulae for fixed rank modification of a

positive definite kernel or matrix.
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SIGNIFICANCE AND EXPLANATION j/
The estimation of one process from measurements on another related

process is a problem that arises in many areas such as Time Series Analysis,

Econometrics, Communications Engineering and Control Engineering. Particularly

in the Engineering Applications there is a great interest in various computa-

tional forms of the algorithms proposed to solve the above problem. One

important question concerns the effect of perturbations, in the initial condi-

tions of the process statistics, on the algorithms. This article discusses

such effects for general process models and relates the results to the inver-

sion of perturbed matrices or kernels.

Th re: r.ibilit'! for the wording and views expressed in this descriptive
;ummary lie:q with MPC, and not with the author of this report.
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SMOOTHING ESTIMATION OF STOCHASTIC PROCESSES - PART I:
CHANGE OF INITIAL CONDITION FORMULAE

V. Solo

Introduction. Recently a great amount of attention has been focussed on various

algorithms for solving the smoothing problem of linear estimation theory. see Ljung

and Kailath [11], Lainiotis 10], and references in these. The main algorithms

include the two-filter formulae, Mayne (13], Fraser (3], Mehra [14]; the innovations

formulae, Kailath and Frost [7] ; and the partitioned algorithms, Govindaraj and

Lainiotis (4].

This work is the first part of a two part investigation of these algorithms.

In Part I it is shown how change of initial condition (CIC) or partitioning formulae

hold in a very general setting (the CIC problem is shown to involve fixed rank

nertusbation in matrix inversion). In Part II the nature of the two-filter algorithms

is explored by providing a simple derivation that shows to what extent the formulae

hold generally and so reveals exactly how a wide sense Markovian assumption in neces-

sary for their full utility.

The remainder of the paper is structured as follows. Section I contains a

discussion of CIC rormulae for discrete observations. Section II concerns CIC

formulae for continuous observations (actually the formulae are the same). Section III

discusses the relation with other work.

Before continuing recall the matrix inversion lemma (MIL). Let , ,

be matrices related by

Z = 4 i'D!'

then

Z - + [.) -i _ -l -i + 1 - 1 .. -1 -ILa)

The following consequences are well known

Zz-i FL C::::? )

Slon;uored b., the United States Army under Contract No. ,AA,29-8-C-0041.
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I. Change of Initial Condition Formulae.

Consider the linear estimation of an n dimensional process x(t) from

measurements on a related n dimensional process y(t). We deal firstly with dis-y

crete measurements (at times tI < t2 < ... < tN = T in an observation interval

2 t T) which we collect into a vector Y. Suppose the process x(t) is composed

of a zero mean process x (t) plus a transient component of the form 4(t,O)i where
-a

:(t,2) (henceforth denoted ;t) is a deterministic transition matrix (with

viZ :(2,0) = I) and F is a random vector uncorrelated with x (t). It is sup-
-a

:'oced that the transient has induced a perturbation within the measured process y(t)

so that -(t) is of the form y(t) = (t) + g(t,0) where y (t) is a zero mean

trocess and g(t,0) a deterministic function. Thus the measurement vector has the

folm

f aa 1d = 0I + (.:

The setting described here has been used by Aasnaes and Kailath [1 to stud,, the

robu.ctnes: of filtering algorithms to initial-condition perturbations.

Ia. A basic CIC Fcrmula.

Confider now the linear estimation of x(t) from the measurements U under

vaicin; as umj tions for the stati,,tics of the vector i.e. the initial conditions

for x(t). "n-or conition "0" let F (r) be the distribution function of the vector

and ,j on5'

wi, . enc,to. inte,jration with respect to the distribution F (,).- We have for

t -

,. 0 , : '. ut, th, linear 1,a! t ;qllares c t'.t imate

•, - I -

I,



x Ct T) = U (x(t)) L .x C~jt):''); u(f H) -ft Ca
E" .. -t P)

x (t C X(t) - . (x (tC C x Ct C C - C (1".)

- - 7) -tf-

-- -('.' - : a (7:-) (c(

-x() xa t)-

!:i 
i ) 

= I ' :! 
' i 

- ... )( - -" ) - -

0n tin . (t 2) f:-:t Ccndition caanl ati:,

:tthcut t.acit: tc act th~e forrula

(XI (t

Ct T) (dl~t)) "1x ( t)- )l (r I .

xlCt) :xCt) - U.i(x{CtC) = xaCt) V it- -, C (2cC

-"! -z _ l (_ 
= 

- : -fi a -
( 

- -1) 2c

i: rc. :i-cc: (t>) ant:) (2L) that

2:l(x~tC C - . (x~tC) C =C(-. -- C 0 (?)

u = : 1 Cx7. (tC <I"' ' Ki = ." C"- 1>,I ') (4).

If. t.7f >rltl. 2j, : . 7>>u frct (la)

-1
x2(t T) - (x~ )) *'-" i 'i1a

(t 7) - V Cx~tCC) 2c, S t t?

' ":. , i "'. t C',, (hiC, (IcC

' :(~~x (t )'') • :'( )

.t1 -1 -i t-

' -4-
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No subscript is given to this last expectation since the same result is obtained under

"0" or I'l Similarly

M = E(x (t)0) t-0' (6b)
-xa t-a +~2

Thus

ul -o -t--0 ' + -1 -' (6c)

Similarly

-,. + - (6d)-l 0 ..---

Thus i 1 , SI' are perturbations of M, So.  When further observations are added S,

remains a fixed rank perturbation of SO. This point is the essence of the ensuing

formulae.

Returning to (5a) we have

xl(tT) - E (X(t)) = MSII

1. -I (m _2

- -1 -i

" -0 1 " -- - :-1 - cq -iS, -m ,n II0) b--(6 ) and (i

- S 1 11 - -1 - :. s-1

-1 o -l = -r -1 y (d n __

-1 + -0 -1 --

-it 11 -
= x-(ST )  C -+) b (o)

t 11 1

= x (tT) - 2 (x(t)) + ( + - :9-

*"r, recalling (3) .'e find

x (t'T) (t T) + (: -05 1(2', 1, + S1 -2) (.,

it

'I

1,t .: w t
(n T) I



. 7, 7) ( ' C () ! Cx (')? C.' h")-
1

C ,7i

- . _. ,, , x _,, 7)

: C- C 'x C:at - " . / (t "; 7) Cx - x:  ' ).TC_,

:a ,tn-: iinear function of t

:< ' ! 
( " 

' : 1 ! 
' )  

- A*1 I 5 -

-n_ - C I

'i ((x (t Y.

.-,.- 
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px t ---- (-- -,. '(C)

ii

ii 7,..-' i: p, .- ' .. , -.. i -h, .',.-.'.p,.

r

L, x

ix



1(t'01T) P -1 (tOTT')'1 
=  

t -l11
G

Note that in formulae (8) the suffices 0,1 are dummy suffices and may be interchanged.

Since no relation has been specified between t and T, equations (8) are both

filtering and smoothing formulae. It is interesting that the data dependent portion of

the correction term in (8) is the same for all t.

Now let us turn to find a CIC formula for PI(tOT) or ' 1 (t,01T). Since

l 0'T) is of intermediate interest a CIC for this will be found too.

lb. A CIC formula for _l(t,O T)7
1

Consider then

-Pt,OIT)T1  = Gt

- t - G- G'SC by (6c)

- ( - ~-lci - G
-t( - -G 1G) - -0-1 -

- _t(I - 'G'S-
1
_5) - IM SolG(I - cG'SlG) by (6d) and (MILd)

s ~t -0S1 G)I - ",Igs- IG) [

- - - - -

-P (t,OT)V Io(I -. S- 1CG) (9a)
-0 -0 _

let us call

. I - l1 (I - .,' G I - 
1G) (10a)

so that

P (t 0 T)0 (t,0 T)

(t 0  
T)- - (t'0T) - (9b)

II- n t, r, trAcr 
!
-aw, gidcd b; ('1Le) we find via (6d) that

-7-
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-1 -i -1 .-1 ,-1

-1u

. rocaL 1:n: (7a) inl (4)

- -1 ( (0 T) 07'
-, / -

:  
" S -e -a_

view in another wav' by" introducingj

. ,; 7) = x' C (73 - 7o)(x (7) - m '

0 -E o T)
x- 2 3.( 7 _ ( 7a) a

-: 7 = 43' .>,

il-(C,, C 7) : (tO2T) .-

-o t,()S_-c))-.-

2 . '' ' ' rua forC 0
1 ro'; (Va)

= - C

%,>

-1 _ -2 1 -1I:, : :

1 .:, ,~ a:. io, (o) ")' r (1<3), Cla) to find

r
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Ic. cIc formula for -1 (0, T)

Now

- m -i-)

1 '~ r 1 '] -lh - o

C I  £ )? - 0 l (ml - ) by (':ILL) ad (10d)

: OT) -G'S Z= (o T) - tii - )
-c (m -l l q

r 0.T)) M

1L- -... 21- -

= (I - 0'S1G)o(O ) - 0 m - m )

(0 i (O T) -1lm1a ))bi' (1 a

-T) - +l - ( -OM

---

=O ) 0 m, cI ) B1: (I a

- - -0 -1-l "

1.formula for C 0(t,t(().

~In -,.: ,,n ix A it is o,. that

T F (t t IT) 
=  

(t t T) + P (t rT) T-i (i t,.T
- -- 1( - - - - ) -

-B (lo-

Thu



. (>iI) aI .: t>i." to he ','rittcn

_ (t ,t T) = F (t,t T) - (t ,O T (t T) (3.1)

.. 't 7 rt ojonal it-Y

- p (C, (  
) - P (OoIT)

- ( b 0 i ) (12)

- =-1 ((11 -

-1 :. r
D - n -i-i = +C~ P(OOT)

S( imli -b ubtoractio

T fll s~t If change of initial condition formulae are

Equations (8a) , (8b) for x (t
1

T)

Equations (9b) (9c) for Pl(t,01T)

Equations (12a) , (121) for P (t t'7)

FquJt ion (tc) for

I uation (U0f) for C1

": )ti , t. t * r v quantity in tee:;c equations has a stochastic interpretation. This

-: ,r al rat,il corm:arison with other work: see Section III. Also it is shown in

- r.. . .n euation:i hold al.-o f-,r continuous time measurement.

1-

-1I
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If. Calculation of (t,OT) in continuous measurement State Space %odels.

The quantity i(t,01T) = P(t,O!T)7
-
1 has only appeared in earlier work with

= t or t = 0. Here we derive a differential equation for (t,0<T) Begin with

the usual State Space ".odel

dx/dt = F(t)x(t) + -(t)w(t)

yAt) H(t)x(t) + v(t)

where w v are uncorrelated white noises with covariance matrix I. We use a formula

of Rauch et. al., [211, (also Kailath and Frost [7, equation (34a)J

dx(t T)/dt = F(t)x(t!T) + -(t)-' (t)P- (t)(x(t'T) - x(t't))

Thus

d:(t,O T)/dt =d/dt E(x(t) - (t T))x' (0)':

F(t)E(x(t) - (tT))x'(0). - I

7(t)-' (t)p- (t) [;(t,0o t )  - (t, O[T)]

Thus

dj(t,n'T)/dt = (F(t) + -(t)?; (t)p- (t))!(t,O'T)

1 F(t)-'(t)p-1(t)i(t,oit)

we need! onl
•

. augment this with an equation for i (t,Ot) which is easily shown to be

the Kalman Filter transition matrix

cl d (t ,O" lt) /dt: ( (t) - T'(t) H' (t) H(t)) (t, O't)

with initial condition z(n,O[O) = I.

p7. cI formula for a C;aus!-ian likolihond.

Solnciij'r th log ;a'isian likelihood which is, to within a constant

In L in I 1 L (lq _SI (13a)

-11-
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NOW + S - -

ISO + ' + 0
- --00

I OIIby (10c) 
(

Ne9xt - s i

-1 
-

whe re 1 (O1T) see (7a).

so

-0 -2 -0

b,; (,mILb) . Coritinuiflg

-1 -o

(In 
- (m - T)' '

0- - o - 1 T o -~ o

sinc- C (i m M).-

Thu2

1/ - 1 -n + TO~n
1 -n ) +

1 if 1 in 1  
(i(ml 0

+ m (T)

= (01OT) = r (= , T)

al~d :;tt r i (8a) to SOC



al;O lyin t:. inver!;i of (9b) with t = 0 iv'

-I, -i -I

*i '.£ = rog

4 0 - -_ _ i. -1 ®rn

- I - I) by (C1b)- -I -c j

Thus

- -,, - - x Co i . . . - x -

p-

(-i - - - (m

! .,.¢v, C12.i) wit. t in; lic:

1 -1

pl - *-
=
[212o~

.-I , ,,, -i - -' - - o -- cl -°

+ (m _ rnO)' - m -m _O (13c)
-1 -0- -i -

.o finally' colloctinq (lia), (131), (13c)

In 1. In + In - In

- (x (OT) _ w T(, T) _ p0(0,0(T))-) (0!T)- (0T))
+ -1 T)C~(,

( m T C - - m o) (14)

-iin

'I



II. ?Ontinluoo3 Time.

Lot us retain the assumytions of Section I concerning the presence of the transient

term in both x and . and suppose now that is measured continuouul3 over the

interval 0 < t - T. Introduce similarly to before the kernels Mi, Si, g ' ,

.lefined on [,O,T] [O,T] by

:.i(t,1) = Ei(Xi(t)Yi(c)) i = 0, 1 (15a)

S (t,7) = i(y. (t)y!( )) i = 0, 1 (15b)

g q (t,:) = ,(t)_2' (7) ; -g' (t,c) = it-g' ) (15c)

'. 'h re

x.(t) x(t) - E. (x(t)) i = 0, 1

yi(t) = Y(t) - Ei(Y(t)) i = 0, 1

Then it follows as in Section Ia that

S= S + gag' (15d)

M1 =1 0 + P.g' (15e)

sulpose too, ,without loss of generality that

is positive definite (15f)

;-rail T(t) is an n n matrix function. In the sequel h(t), f(t) will denote
x

gneral n -vector functions.

The ppropriate setting for the further development of CIC formulae in a general

fin'. 1-n is the t'eory of Reproducing Kernel lilbert Spaces (RKHS): See Parzen [16]

anIl ilat1 [ The idea in the RKHS approach is to provide a coordinate free

2 res1.tJ' 'Dn of continuous time equivalents of discrete forms such as "h's 1f."

,iParzrn [161 only discus.nen; RKHiS's for necalar processes so it will be indicatedN rifl. ! ' to d-fine an appropriate PKIIS for vector roce:sen.

*-14-
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Proposition 1. Existence and Uniqueness of a vector RKHS qenerated by an n× ny y

matrix covariance kernel (cf. Parzen [17, Theorem 3.1]). Let y(t), t in [0,T]

have covariance kernel :(t,,). Let H(.) consist of all n -vector functions h()
ym

on (0,T] of the form

h(t) = E(y(t)U)

for some scalar U in SL,(s(t), t in 1O,T]) where SL2  is the (scalar) Hilbert

Space of random variables that are finite scalar linear combinations (of the form

>iaiY(t.)) of random variables y(t), t in [0,T] or limits in mean square of such

finite linear combinations. Define an inner product on H() as follows. If

h(t) = E(y(t)U); f(t) = E(y(t)V) for U, V c SL 2 , define

( h',f)- = E(UV)

Then H(7) is a Hilbert Space satisfying

(a) i.(-,t) H(7) i = . n y

where 1. (.,t) is the ith column of -(.,t)-1

(b) ( h',- (.,t) ) = h (t) for all h 11 ()

Proof. Follows much as in the proof of Theorem 3.1 of Parzen [17]. Observe for

example though that

_i 
(  

= E( y )yi(t))

where v. (t) is the ith component of i(t). Thus

* f',i(.,t) I = E(x.iCt):) f. i(t)

7.emark 1. Let -(t) be an n m matrix function on the form F(t) (fl(t) .. f (t))_____- -1 m

wher, f (t) are r.-vector functions . Also let (t) be a similarly defined

n.. - n matrix fun,:tion. Witn a sliaht buse of notation denote by (FG the m * n

.ntrix " a',, , i,j .1.,r,e nt i:" f , . Thus,

-i7

-11



II

can be written

(h', (.,t ) = h'(t)

Also

z ( ,) Zj .s ) = Zij (t's)

reads

(Z(.,t),7(.,s))z _(t's)

Finally we denote

f. E H(Z) i = 1 . ... , m
-1

by F E H(Z)

Remark 2. All the scalar RKHS theorems given by Parzen (16] apply to vector RKHS's.

The basic question in applying RKHS theory consists in finding computational

expressions for the RKHS norm: for some concrete examples see Parzen (16] and Kailath

et. al. [7]. To obtain results analagous to those of Section I we need a MIL for a

RXHS. First however it is convenient to define the direct product of two vector RKHS's

(cf. Parzen (171; also Kailath (6, p, 181).

If Z, 7 are two m-dimensional positive definite kernels on 10,T] - 1O,T]

generating RKHS's H(Z), H(.) respectively then the direct product H(Z) 6 H(:) is

the space of m i m matrix functions on [0,T] x [O,T] which are linear combinations

of products of functions, one from -(Z), the other from H(7) (of the form

:_(t,s) = ,iljz.(t)-'(s)d..) on limits in the norm

'm(.,x) z z ( "'- ).d
i j

( -i )j z • - d-

of suchi linear combinations (d, ar-e real scalars).

;ro.0 -ition 2. ::IL for FKHS's. Let Z, " be m m m matrix kernels on [0,T] ' [0,T]

relat -b ,.,+

i Z~t,1) = It,s) + :'(t)tO:'(s)

~-16-
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where "(t) is an m d matrix function and a d - [,sitic* lefiite marix.

Let 11(Z), 1, be the -HS's gerrated by Z, ra:-ectivel: then iff 2)

(ie. d I() , - . . 1 where .(t) ,- the it. colu. f ) wD w .a,,,
.

(a) f . H(Z) iff f H()

This does not mean H(Z) is a subsiace of H) ) or '.'i> vrga sinte t.at w<c

entail equality of inner Iroedct .

(b) For h, f 11(Z) to.e H1(,) 1 T r -i, i

< 1 h f . .. , = C: , - , : , . ,

where V = H * "' ''

Remark 1. Formula (b) was suggested by (:ILa).

Remark 2. Note that V is well defined iff H) i.c. " ,

Proof. To see (a) we use a theorem of Aronsz' K, . 354) which ir :lie that (a) halt-

if

(W There are constants c,, c. such that cZ -' and c. - Z are :ositlve

semide finite.

In fact (i) is true with cZ = 1 and

c. = tr( ?') (16)

where = largest eigenvalue of P. This- claim is Eroven in A: endax B.

Now in view of (a), (b) is stablished if it i.; shown that

(ii) Z(.,t) H(.) for all t in [0,71

(iii) for all vectors h H)

i, - 2

ij :OW (ii) is clearly true since ;(.,t) • (),C 1 11 and Z(.,t) = (.,t) i

To see (iii) let h 1( ) and compute

-17-

r I ,



( 1h,(.,t) ( h',(.)7' (t)

h (t) + h' ,7 V ]I - V-D - - ' ,7>.1r7'(t)

h' (t)

Since, b': definition of V

V~
1 
(L + (7','- 1-I

The result is thus proven.

Remark 3. Since - H(2) and

d d d
'(t)D7'(s) = d (t)2(s)

it follows that D7' - H(7) H() i.e. (iv) holds

(iv) Z - -,. H(?) 0 H(M)

:ow however according to a result of Godaira [15] (see also Kailath [6, p. 20)) (i),

(iv) are necessary" and sufficient for the problem of "detection" between 2 and Z

to Pe nonsingular. It is apparent that 7 H() ensures this nonsingularity.

Pemark 4. In a zimilar way other :*,IL expressions analogous to those of Section I

(viz: ::L(b) - ":IL(f)) can be obtained (iff H(-)).

::o,. these r'sults can be applied to the present problem.

Proponition 3. Let H. be the FKHS'S generated by Si, (t,:), i = 0, 1. Suppose that

is :csitive definite. Then iff g 11C we have

(a) h H iff h H

) ) e 1  inner roduct is given by

h, , = ( h'f) - h' P-
' f O  

(17a)

• -i
', "...', r.- =- + ! " ->o

-18-
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Proof. Since . is assumed positive definite the result follows from Proposition 2.

Remark. For future use we state the result corresponding to (MILb). Under the condi-

tions of Proposition 3

h h " [f 1 = h ' , f ) 0 - h ' ,g ) 1 ( g _ , , ( l 7 b )

Finall. we turn to coosider the linear estimation problem. The RKHS framework

allows a general solution to this problem: namely' (Parzen [20])

x.(t'T) = Ei(X(t)) + U. (t T) i = 0, 1

where T". (t T) is the unique solution to the equationLi

".-(U t T )y (-)) = it,-) = ( X(t) Y' -)) for all in [0 ,T ] i = O , 1 (18a)

where y ( = " g) - m()0i  i = 0, 1

That is, U .iCt T (the jtk 6 el.-nt of Ui (t'T) is the unique member of S(i)
-1 2

that satisfies (18a). :ce can write s:-bolically

- T K U. (t,.) ' i i = 0, 1 (18b)

The ecuality Is sbnlic because i/ H (Indeed (j yi.) has infinite variance--
i 1 , -11

this is clear since the variance in the discrete case is Nn ). In any case we arey

now r,'ad'2 to establish the CIC formulae analogous to those of Section I. To see the

tyte of argu.:-t needed the following result is established (cf. the main result

(6e), (7a) of Section Ia).

ronoition 4. For the situation referred to at the beginning of this Section and

under the conditions of Proposition 3 (in particular that • H0) we have

t(t T  
= x0(tT) + (i(t) - ul' l)(-(01T) + m- m0 )

- T) (-(t (tl.)1))(' '-0

-0MCT) (g',,z~-0 - 00

-19-
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Proof. To simplify the argument and help reveal the basic idea we take nli -n
so that xl(t) = x (t) = x(t) and yl(t) = y (t) y(t) and x(t'T) = (t T)

i = 0, 1. Let us denote

U1 (t T) = "0 (tT) + ( (t) - (.V,gl)LY0

re Y O (01T) g

We have then to show

U1 (t!T) l(t T) - <. ly)

since U_(t T) is unique this will follow if we establish

E l(tT)'())= _(t,o) for all o in [0,T)

Suppose it is shown that

Ci) EI(C_ 0 (tT)z Cc)) = <M0(t ,.*),SI(. , ) 0
-0 0-

(ii) E (V0Y'(O)) = g ,S (,) 0

Then we can find

CUI(tT)y ) (t,.),S (.,C))0 + (t) - (M1Ct,.),g )l)_(g',Sl(.,c) 0

= (M (t 
'
)Is 

(
Cz
'

)o + - t, .) , 's

-0 -1 0 ( 'SC,) 0  C.1

(t, ' s ) 0  - , 0  by (15e)

= .i(t,) ,S ( by (17b)

= 'I (t,c) by the reproducing property

Thus we have to prove (i), (ii).

Let P1, P0 be the probability measures induced on the space of sample functionsI0

of the normal process Z(t) under conditions "1", "0" respectively. Now accordinr

to .cmark 3 following Proposition 2 the assumption 2 . HO ensures the problem of

detection between "1" and "0" is nonsingular so that the Radon-Nikod."M derivativc

~-20-

if
.A • -- n .. ... . . . .. ........ ,---.



(i.c. likeli'iood ratio) d 1 /dF0  exists (cf. Parzc:. 119]). It follows then that

r ( r%'~) 0-(U0 (t 0 ) d

Cn the other '-and

E (W (t T)y (')= t
n- 0 -

b%. the definition of U(tT): However

E,(y(t)v.0(:)dP /dP,) E E(y (t)v'(cI

ow if we can show that

(I)dP /dP S

1 0 2

we will hlave the corres1<ondences between SL 0and H,2

U (t ') C,*

,hen it will be ,,ossible to acvl2 te definition of 4 *, to see

0-0 (T)- 1-d I 1 .dQ 'Z

which is Wi Similar>:Y (ii) can be establis!ced.

-o ce (19) obscrvc

Src accotdin.; to, (a) cf Pro coj ,t ion (3)

T ,u§ b-. ti 3efinit ion of !I (19) follow-. Tle, trouf is comrcle.

2ocno,: that b,,. al~lI ing tl he basic p.XIIS a('proxinat ion the-r-n (I arz:Co 1-flJ

a14 Prrn (17, Theourem 6EI3 Kj lath. * 411) to t2&, di-cre, kli:o rat ic,



expression (14) of Section If we obtain the Radon-Nikodyin derivative

dt/dp = [ cxj c _ uT

where

U = - C(0 T) - !- T))(P l 
C IT) Po (0,0 -T)) (

o IT )  
o 

(0
I
T )

2 -m1 - m ':- C~ 
_  - 1 -o

S-2 2-

-A



Relation with other work.

No',.. we demonstrate how these general results include tainiotis' Generalized

Fartitioned Algorit'hm, (CPA) (see Sovindaraj and Lainiotis, [41) as well as work of

Ljung and Kailath I].

Consider the state space models

x(t) = F(t)x(t) + F (t)w(t)

(t) H(t)x(t) + v(t)

or X
1  

= F W

tk 
=

k k -:k

wher, c: eacn case v, v are u:correlated white roises.

T en eaco 1 of the for:

" g- (fix + v) + H:
- a -..- . .

ohere x a are zero-mean rocesses and = x(O). Also in each case $ is the
-a , a- -

transition matrix associated with . Thus the CIC formula derived above are

a: rlicable to these :-tate :ace model:.

dIia. -elation t

7'." -artiti-ninvi of the CIZ roblem heans %%ith condition "C" and

agoo o ndtto.. r c :'- adlinm;n furt ii transient to the signal and

r . ... u. an o:oatinn (ha) a:tt~un r I - mn. Also recall

" '-'=) an-i :ian . - 7)in

X (t " ) (0 1 " m _ (n))

X (t 7) x (t T) + (t, T)xr (0 T) (2 )

I

r,

_4)

j



P1 (t,tLT) P P 0 (t,tLT) + Y0(t,0IT)Pr(CIT) ,(t,0'T) (23b)

where we have introduced

r(OJT) = Pr(OT)( 0 (OJT) + L-In ) (2c)-r -r

Finally recall (10c) in the new notation

P I(01T) = 0 +-I (2 cd)

Now recalling the stochastic interpretation of all the terms in equations (20) set

T = t to see these equations can be compared with equations (41), (42), (43), (44)

of Govindaraj and Lainiotis (41 (in their notation take Z - 0, k I t; "n" 3 "0"

and other obvious equivalences). Also equations (9c), (10f), (lla) can be compared to

equations (55) , (56), (57).

The case 70 = 2 is discussed, for completeness, in Appendix C.

IIIb. Relation to work of Ljung and Kailath [12].

Equations (9b), (10f) can be compared to Ljunq and Kailath (10, equations 32, 33]

if we make the equivalence W(t) - 0 : to see this recall the stochastic interpretation

of 0 in (lod). (There thus appears to be a miswrite of equation (33)). Also

equation (8b) can be found in Ljung and Kailath (12] in two cases: for T t see

equation (14); for t = 0 see equation (26) and recall that

j_(0,0jT) = -l(,01TS [
1

= - 4i,1 by (12c)

-24-
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Conclusion. In this article change of initial condition formulae have been presented

for linear en- imates of general nonstationary processes perturbed by fixed rank

transients. The formulae apply to discrete or continuous measurement and to estima-

tion in continuous or discrete time. Also a CIC formula for a Gaussian likelihood

has been given.

The derivations depend essentially on a simple Matrix Inversion Lemma.

* ,-25-
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jpefldix A. A dCI formula for P I(t,t!T).

First observe

£(t,t!T) E E1 x(t T) - E (x(tf)( 1 (t T) E E(x(tfll'

The ides is to establish, a relation with MS mN However let us, calculate

EI(t,t'T) = SltTjj't (xt I - tT

= (x(t) - ^ (t T)Ix'(t) by orthogonality

= E x(t) - E (x(t))J1x,(t)] - £ [x (t'T) - E(~)I't

SE[x 1(t)X'(t)) + (t~tlT) by orthogonality

Thus

P (t,t!T) - P (t,t T) = - P(t,tIT) - PO(t,tjT)]
-1 0 -t-- 2-

Now if it is shown that

E (ttT) P(tt1T) 4S0 !1 -NO

t -- -E G)At ' ; +

then thep result (12a) will follow in view of (7c).

Ccn ider then

.1 (S
1 

- -l - b% (:*11Lb)

J > ~ G')S-~ 1, :11 -C:.. CS0  by (6c)

t ......

-26
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IS

-1 -1i0S A +( - . -1AGS0M

-'I S G'1 + M S .111 ( - S G)AG's ri'

= 0 + moso + t - 1 G) oS 0GA + t- 01S G ,;oi

Now recall (9a)

- s 
G 

S - S I
G) (I - I s 

- 
C)

It 1 t o0

which, b, (10b) is also

SS - rosoG) (I + -G'S o1)-1

t 0 0 0

Thus the sum of the second and third terms above is

M s-1 G0'1, + -s G)( o + C'S1 ) t (S ) -1ISI,) L t
0 tt 00 -0 00 0

-1-l -1 1
= MS W. + (4- IMtS G)(I (I + 's

- 
G)I

0 0 t t 0 0 0 t

% l 1 -lIS )Z
0 0 + t 0 0 t t 1 t

-17

-~~~ '.'- V - S G)4

Ths't- t t 1 1 ~t

M1 S 1~=rs M + t7'- - + s- GC, .;S- I',I tIo t 't 1~S t)s I; 1. 0 0

1i S 51.1 + A4' - (" - 2 S
1
C - 1 

1
0)0 00 t t t 11 00

which is what was required to be established.

-27-
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Appendix B. Derivation of (16).

Let ai i = 1, ..., N be any m-vectors and tI < t2 < ... < t be any

points in [0,T]. The claim is that

N IN N NE a N(t )D'(t )a, < i.tr(UF' 2) )Z. lai.(ti,tj)a.
iljli: i - tj - - ,- i j3

Now

N NE = ,F a(ti))D(F3=lF_(tja)
i=l-i-i- 1- )

= u'Du < tD'
-~j -- - -

N

where 2 = il'(t )a.
'i=1- i -i

Next apply the reproducing property to see

N

= F' (.),i(. )a

(' -N E say

Now u has kth element uk  where

uk = ( w ) Ik is the kth column of F

Thus

d 2 d
uu= u c 'y) (w' ,w-' - i=l k - Zk-lk'k F-N -N:

= tr(P'-,F) (w',w

- -FN-N

However

(7 N , ,t N (. )
=7 "(i= _ ,ti -- i

N NV j
rN N

= Fj=l

by the reproducing property. The result is thus established.

-28-

I...

. . . . . .. i i " 1 II|1IIIl . .. . ..



Appendix C. :elation with partitioned algorithnm for = 0

Consider .w the case that = . Then b, (10a)

£ (CIT) - *O A

-: _(o,O1T) P

Thus, since Pr = , (9b) becomes

(t, 0 T)- I  = : (tCIT)P, (Cl)

while (9d) reads

1(t,OJT) (tOT) - o(t ,0 P (C2)

Also (l1c becomes

P- = 1 + 0 (C3)1 -1

When further m0 = O, (7b) implies

0 <(OIT) = 2

Thus for t = 0 (8a) becomes

() p P i + 1o(0
1

T)) (C4)

The pair (C3), (C4) with T = t, are just a general version of Lainiotis' original

partitioned algorithm: Lainiotis 191, equations (3), (4). Equations (Cl), (C2) can.

be compared with Lainiotis [9) equations (2n), (21).

I
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